一级建筑师网上培训,一建培训要选择师资好的机构。
一级建造师《市政工程》知识点:1K34盾构掘进技术
1K30盾构法施工
1K34 盾构掘进技术
下面以密闭式盾构为例简要介绍掘进技术。
一、盾构法施工步骤与掘进控制内容
盾构法施工现场如图1K12-5所示,主要施工步骤为:
(1)在一段隧道的起始端和终止端各建一个工作井(城市地铁一般利用车站的端头)作为始发或接收工作井;
(2)盾构在始发工作井内安装就位;
(3)依靠盾构千斤顶推力(作用在工作井后壁或新拼装好的衬砌上)将盾构从始发工作井的洞口推人地层;
(4)盾构在地层中沿着设计轴线推进,在推进的同时不断出土(泥)和安装衬砌管片;
(5)及时向衬砌背后的空隙注浆,防止地层变形并使衬砌安定;
(6)盾构进入接收工作井并被吊移,如施工需要,也可穿越工作井继续掘进。
盾构掘进控制的目的是确保开挖面稳定的同时,构筑隧道结构、维持隧道线形、及早填充盾尾空隙。因此,开挖控制、一次衬砌、线形控制和注浆构成了盾构掘进控制四要素。施工前必须根据地质条件、隧道条件、环境条件、设计要求等,在试验的基础上,确定具体控制内容与参数;施工中根据包括监控量测的各项数据调整控制参数,才能确保实现施工安全、施工质量、施工工期与施工成本预期目标。盾构掘进控制的具体内容见表1K34。
密闭式盾构掘进控制内容构成 表1K34
一、开挖控制
开挖控制的根本目的是确保开挖面稳定。
土压式盾构与泥水式盾构的开挖控制内容略有不同。
(一)土压(泥水压)控制
(1)土压式盾构,以土压和塑流性改良控制为主,辅以排土量、盾构参数控制。泥水式盾构,以泥水压和泥浆性能控制为主,辅以排土量控制。
(2)开挖面的土压(泥水压)控制值,按地下水压(间隙水压)+土压十预备压设定。
1)地下水压可从钻孔数据正确掌握,但要考虑季节性变动。靠近河流等场合,要考虑水面水位变动的影响。
2)土压有静止土压、主动土压和松弛土压,要根据地层条件.区别使用。按静止土压设定控制土压,是开挖面不变形的最理想土压值,但控制土压相当大,必须加大盾构装备能力。主动土压是开挖面不发生坍塌的临界压力,控制土压最小。地质条件良好、覆土深、能形成土拱的场合,可采用松弛土压。
3)预备压,用来补偿施工中的压力损失,土压式盾构通常取10~20kN/m2,泥水式盾构通常取20~50kN/m2 。
(3)计算土压(泥水压)控制值时,一般沿隧道轴线取适当间隔(例如20m),按各断面的土质条件,计算出上限值与下限值,并根据施工条件在其范围内设定。土体稳定性好的场合取低值,地层变形要求小的场合取高值。
上限值:
Pmax=地下水压 十 静止土压 十 预备压
下限值:
Pmin=地下水压+(主动土压或松弛土压)+预备压
为使开挖面稳定,土压(泥水压)变动要小;变动大的情况下,一般开挖面不稳定。
(二)土压式盾构泥土的塑流化改良控制
(1)土压式盾构掘进时,理想地层的土特性是:
1)塑性变形好;
2)流塑至软塑状;
3)内摩擦小;
4)渗透性低。
细颗粒(75μm以下的粉土与黏土)含量30%以上的土砂,塑性流动性满足要求。在细颗粒含量低于30%、或砂卵石地层,必须加泥或加泡沫等改良材料,以提高塑性流动性和止水性(见图1K34-1)。
改良材料必须具有流动性、易与开挖土砂混合、不离析、无污染等特性。一般使用的改良材料有矿物系(如膨润土泥浆)、界面活性剂系(如泡沫)、高吸水性树脂系和水溶性高分子系四类(我国目前常用前两类),可单独或组合使用。
(2)选择改良材料要依据以下条件:
1)土质(粒度分布、砾石粒径、砾石含量、黏性土含量、均等系数等);
2)透水系数;
3)地下水压;
4)水离子电性;
5)是否泵送排土;
6)加泥(泡沫等)设备空间(地面、隧道内);
7)掘进长度;
8)弃土处理条件;
9)费用(材料价格、注入量、材料损耗、用电量、设备费等)。
(3)塑流化改良控制是土压式盾构施工的最重要要素之一,要随时把握土压仓内土砂的塑性流动性。一般按以下方法掌握塑流性状态。
1)根据排土性状
取样测定(或根据经验目视)土砂的坍落度,以把握土压仓内土砂的流动状态。采用的坍落度控制值取决于土质、改良材料性状与土的输送方式。
2)根据土砂输送效率
按螺旋输送机转数计算的排土量与按盾构推进速度计算的排土量进行比较,以判断开挖土砂的流动状态。一般情况下,土压仓内土砂的塑性流动性好,盾构掘进就正常,两者高度相关。
3)根据盾构机械负荷
根据刀盘油压(或电压)、刀盘扭矩、螺旋输送机扭矩、千斤顶推力等机械负荷变化,判断土砂的流动状态。一般根据初始掘进时的机械负荷状况和地层变化结果等因素,确定开挖土砂的最适性状和控制值的容许范围。
(三)泥水式盾构的泥浆性能控制
泥水式盾构掘进时,泥浆起着两方面的重要作用:一是依靠泥浆压力在开挖面形成泥膜或渗透区域,开挖面土体强度提高,同时泥浆压力平衡了开挖面土压和水压,达到了开挖面稳定的目的;二是泥浆作为输送介质,担负着将所有挖出土砂运送到工作井外的任务。因此,泥浆性能控制是泥水式盾构施工的最重要要素之一。
泥浆性能包括:比重、黏度、pH值、过滤特性和含砂率。
(四)排土量控制
1.开挖土量计算
单位掘进循环(一般按一环管片宽度为一个掘进循环)开挖土量Q,一般按下式计算:
式中 V――开挖土干砂量(m3);
Q――开挖土计算体积(m3);
Gs――土颗粒相对密度;
ω――土体的含水量(%)。
干砂量控制方法是,检测单位掘进循环送泥干砂量V1与排泥干砂量V2,按下式计算排土干砂量V3:
三、管片拼装控制
(一)拼装方法
1.拼装成环方式
盾构推进结束后,迅速拼装管片成环。除特殊场合外,大都采取错缝拼装。在纠偏或急曲线施工的情况下,有时采用通缝拼装。
2.拼装顺序
一般从下部的标准(A型)管片开始,依次左右两侧交替安装标准管片,然后拼装邻接(B型)管片,最后安装楔形(K型)管片。
3.盾构千斤顶操作
拼装时,若盾构千斤顶同时全部缩回,则在开挖面土压的作用下盾构会后退,开挖面将不稳定,管片拼装空间也将难以保证。因此,随管片拼装顺序分别缩回盾构千斤顶非常重要。
4.紧固连接螺栓
先紧固环向(管片之间)连接螺栓,后紧固轴向(环与环之间)连接螺栓。采用扭矩扳手紧固,紧固力取决于螺栓的直径与强度。
5.楔形管片安装方法
楔形管片安装在邻接管片之间,为了不发生管片损伤、密封条剥离,必须充分注意正确地插入楔形管片。为方便插入楔形管片,可装备能将邻接管片沿径向向外顶出的千斤顶,以增大插入空间。
拼装径向插入型楔形管片时,楔形管片有向内的趋势,在盾构千斤顶推力作用下,其向内的趋势加剧。拼装轴向插入型楔形管片时,管片后端有向内的趋势,而前端有向外的趋势。
6.连接螺栓再紧固
一环管片拼装后,利用全部盾构千斤顶均匀施加压力,充分紧固轴向连接螺栓。
盾构继续掘进后,在盾构千斤顶推力、脱出盾尾后土(水)压力的作用下衬砌产生变形,拼装时紧固的连接螺栓会松弛。为此,待推进到千斤顶推力影响不到的位置后,用扭矩扳手等,再一次紧固连接螺栓。再紧固的位置随隧道外径、隧道线形、管片种类、地质条件等而不同。
(二)真圆保持
管片拼装呈真圆,并保持真圆状态,对于确保隧道尺寸精度、提高施工速度与止水性及减少地层沉降非常重要。
管片环从盾尾脱出后,到注浆浆体硬化到某种程度的过程中,多采用真圆保持装置。
(三)管片拼装误差及其控制
管片拼装时,若管片间连接面不平行,导致环间连接面不平,则拼装中的管片与已拼管片的角部呈点接触或线接触,在盾构千斤顶推力作用下,发生破损(见图1K34―2)。为此,拼装管片时,各管片连接面要拼接整齐,连接螺栓要充分紧固。
另外,盾构掘进方向与管片环方向不一致时,盾构与管片产生干涉,将导致管片损伤或变形。伴随管片宽度增加,上述情况增多。为防止管片损伤,预先要根据曲线半径与管片宽度对适宜的盾构方向控制方法进行详细研究,施工中对每环管片的盾尾间隙认真检测,并对隧道线形与盾构方向严格控制。在盾构与管片产生干涉的场合,必须迅速改变盾构方向、消除干涉。
盾构纠偏应及时连续,过大的偏斜量不能采取一次纠偏的方法,纠偏时不得损坏管片,并保证后一环管片的顺利拼装。
(四)楔形环的使用
除盾构沿曲线掘进必须使用楔形环外,在盾构与管片有产生干涉趋势的情况下也可使用楔形环。
以上就是关于一级建筑师网上培训的详细介绍,更多与一级建造师培训有关的内容,请继续关注数豆子。